
www.manaraa.com

Journal of Internet Services
and Applications

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7
https://doi.org/10.1186/s13174-019-0105-z

RESEARCH Open Access

Managing to release early, often and on
time in the OpenStack software ecosystem
José Apolinário Teixeira* and Helena Karsten

Abstract

The dictum of “Release early, release often.” by Eric Raymond as the Linux modus operandi highlights the importance
of release management in open source software development. However, there are very few empirical studies
addressing release management in this context. It is already known that most open source software communities
adopt either a feature-based or time-based release strategy. Both have their own advantages and disadvantages that
are also context-specific. Recent research reports that many prominent open source software projects have overcome
a number of recurrent problems by moving from feature-based to time-based release strategies. In this longitudinal
case study, we address the release management practices of OpenStack, a large scale open source project developing
cloud computing technologies. We discuss how the release management practices of OpenStack have evolved in
terms of chosen strategy and timeframes with close attention to processes and tools. We discuss the number of
practical and managerial issues related to release management within the context of large and complex software
ecosystems. Our findings also reveal that multiple release management cycles can co-exist in large and complex
software ecosystems such as OpenStack.

Keywords: Open source, OSS, FLOSS, Release management, Release engineering, OpenStack

1 Introduction
The dictum of “Release early, release often” by Eric
Raymond as the Linux modus operandi [1, 2] high-
lights the importance of release management in open
source software development (see [3–5]). Across disci-
plines, release management is acknowledged to be a very
complex process that raises many issues among the pro-
ducers and users of software [6–9]. However, there are
very few empirical studies addressing release manage-
ment in open source software development [5, 10]. This is
unfortunate since many lessons can be learned from open
source software communities [11–13] because they allow
studying the socio-technical aspects of software develop-
ment freely whilst the proprietary model allows access
only to a few scholars.
Given this scarcity of empirical work on release man-

agement in the context of open source software [5, 10],
we address how a particularly large, complex and highly
networked open source software ecosystem implemented
and refined a time-based release strategy. Taking the case

*Correspondence: jose.teixeira@abo.fi
Åbo Akademi University, Turku, Finland

of OpenStack, a fast growing cloud computing platform
that is increasingly attracting scholarly attention (e.g.,
[14–18]), we explore how a time-based release manage-
ment strategy was implemented in practice by looking at
the overall release management process per se as well as
the infrastructural tools that support it.
By following OpenStack since its inception at the

National Aeronautics and Space Administration (NASA)1,
we narrate the evolution of release management at Open-
Stack. By investigating this ’moving target’, we found out
that the cross-project release management team relies
upon freezes to encourage developers to change their
production focus from the development of components
to the overall upstream integration and stabilization of
components as a whole. After many refinements, Open-
Stack runs now a time-based release management cycle
that is quite liberal (i.e., open to changes and flexi-
ble to adaptation). In particular situations, the different
sub-project teams across the community are allowed to
work around the ’default’ six months release cycle. As
the project grew, different release cycles started to co-
exist across the various OpenStack sub-projects. Release

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0105-z&domain=pdf
http://orcid.org/0000-0002-7195-4157
mailto: jose.teixeira@abo.fi
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 2 of 22

management started depending heavily on many soft-
ware tools partially automating the release management
process (e.g., tools for version control, revision control,
continuous upstream integration, continuous upstream
testing, and configuration management). Besides its
acknowledged benefits, the implementation of a liberal
time-based release strategy is a challenging cooperative
task interweaving people with processes, technology, and
organizations.

2 Prior related work
Across disciplines, but predominantly in software engi-
neering, plenty of research addressed issues of release
management (see [9, 19–24] among others). Whilst we
acknowledge and value such research, we note that
the studies were mostly conducted in single firms that
released proprietary software; a sharp contrast with our
case where multiple firms release open source software
(i.e., an open source software ecosystem).
On that regard, a framework for analyzing openness in

the context of digital platforms and ecosystems recently
proposed by Teixeira (2015) [25] raises issues of gover-
nance, transparency, market and intellectual property that
can be used to juxtapose release management on the sin-
gle firm releasing proprietary software vs. the network of
firms releasing open source software:

• Governance. There is a sharp contrast in terms of
inclusiveness and control across these two settings.
While a single firm releasing proprietary software has
more control over its development processes, the
network of firms needs to accommodate multiple and
often conflicting agendas. Release management in
open source software ecosystems needs to
accommodate that participants can have different
and competing business models and thereby different
motivations to engage and contribute. Furthermore,
release management in open source projects is more
exposed to different mental models, different
corporate and individual cultures in a setting or
irrevocable openness [26]. In addition, open source
ecosystems also tend to be more inclusive to
third-party contributors (e.g., students, academics or
users among others that do not need a certain
organizational affiliation or license to contribute).
The power and the influence on deciding what is and
what is not released are shared across multiple and
heterogeneous participants [16].

• Transparency. While it is common for the single firm
releasing proprietary software to hide information
about the software being released (e.g., the source
code, the bug tracking information), the same is not
customary in open source software ecosystems where
access and transparency are required for the

community to function. It is also worth remarking
that while most open source software is released on
the Internet (i.e. to a repository or a website where it
can be consumed by others), much proprietary
software is only considered released once deployed at
the customers’ production environment [24].

• Market. While a single firm releasing proprietary
software has more control over the
commercialization of the software and its
complements, in the case of open source software
ecosystems, the value exploration around a
component can not be fully controlled by a single
firm. Multiple firms can compete for the value
around the ’common’ software being released. In the
case of OpenStack, when deciding whether a certain
open source component is released or not, a number
of issues can be raised, such as ’Will the component
compete with some of our proprietary offerings (e.g.,
plug-ins)?’, ’Will the component allow us to win some
consulting and deployment contracts?’, ’Will the
component increase the demand for our hardware?’or
’Will the component increase the demand for our
hosting infrastructure?’ among other market-related
issues that can impact release management.

• Intellectual property rights. Releasing software can
create prior art in terms of intellectual property
rights. Single firms releasing proprietary software
tend to deal more with intellectual property
protection issues. In open software ecosystems, there
might be intellectual property issues as well, but they
often need to be resolved across multiple
participants. Furthermore, by releasing under an
open source software license, the developers or firms
are giving up rights that are automatically granted by
law. Note that it is not uncommon for firms to
submit related patents prior to releasing a certain
software component. This aspect is more relevant in
markets where software can be patentable (USA,
Japan, and South Korea) [27]. From the point of view
of brands and trademarks, there is also a sharp
contrast. While a single firm often has control over
the trademark of a given software product, in the case
of open source software such control is often
multi-lateral and negotiated across the different
individuals and organizations that contribute to the
joint development of open source software. After all,
the quality of a given release can affect the value of
the brand and the trademark associated with the
software being released.

Regarding release management within the specific con-
text of open source software, it is known that release
management affects both producers and users of soft-
ware. On the producer side, prior research suggests that

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 3 of 22

community activity increases when the scheduled release
date gets closer [28]. On the user side, new releases result
in spikes of downloads [29]. Library projects where new
code libraries are developed and client projects where
the libraries are reused organize release management in
a different way to accomodate their technical dependen-
cies. On that regard, recent results suggest that client
projects are quicker to update libraries with a rapid release
cycle compared to actual library projects with a longer
release cycle [30]. The same study also suggests that
client projects are more likely to adopt the latest ver-
sion of libraries with shorter release cycles. As noted in
the early work of Michlmayr [31] focusing on release
management in open source software, release manage-
ment is concerned with the delivery of products to end
users. It is therefore not surprising that recently some
have seen release management as a process that sup-
ports value co-creation among suppliers and consumers of
software [6, 23].
As pointed out by three recent doctoral dissertations

addressing release management in the context of open
source software [31–33], most open source software com-
munities adopt either a feature-based or a time-based
release strategy. Many prominent open source software
projects start with sporadic releases in which develop-
ers announce the newly developed features2. However, as
many of these projects grew in size and complexity, they
started adopting time-based release strategies3. An early
empirical study [34] that mined the repository of a project
while it adopted a time-based release strategy (i.e., the
evolution of an e-mail client), reported that the adoption
of a time-based release cycle boosted the development in
general terms over time in comparison to feature-based
release cycles. There are many problems associated with
feature-based strategies. For example, if critical features
are not ready, they block the overall release. Another
example is when developers work on the features they
are interested in, coordinating their activities can be
challenging [35]. A recent studies based on interviews
with key members of seven prominent volunteer-based
open source projects, points out that these problems
can be overcome by employing a time-based release
strategy [5, 36].
Time-based release strategies encompass meeting a

schedule, an agenda, or a deadline. These can be either
strict or liberal. To enforce that software is released
on time, the use of freezes (such as code freezes) will
set a clear deadline for the software development team.
Open source developers have much freedom to man-
age their own software development efforts, but the
use of freezes acts in the opposite way, by constrain-
ing the developers. If new features are not implemented
before the upcoming freeze, they will not be included in
the next release. Consequently, when developers realize

this, the development of these features is either can-
celed, put on hold, or developed separately for future
releases.
The freezes that occur before the scheduled time-based

release, act as control mechanisms that slowly halt the
production of the development core code [13, 37]. In large
and complex open source software projects with a mod-
ular architecture integrating components with each other,
this kind of a freeze forces developers to (1) fix and release
the individual components upstream, (2) integrate the
different components and test the integrated totality.
According to Fitzgerald, the freeze categories can

include [13]:

feature freeze no new functionality can be added, the
focus should be on removing defects;

string freeze no messages displayed by the program,
such as error messages, can be changed. This allows
translating as many messages as possible before the
release;4

code freeze a permission is required to make any changes,
even to fix bugs.

3 Empirical background
The cloud computing business is dominated by a small
number of players (e.g., Amazon, Google and Microsoft).
The leading players do not sell cloud infrastructure prod-
ucts. Instead, they provide bundled computing services.
If there was no alternatives, all cloud computation would
run in hardware and software infrastructures controlled
by very few players with increased customer lock-in [16].
Competing with the providers of these services, the

leading product alternatives are not commercial. Instead,
they are four open source projects: OpenStack, Cloud-
Stack, OpenNebula, and Eucalyptus. While the com-
mercial cloud computing services are developed and
tightly controlled by a single organization, the open
source products are more inclusive and networked
where multiple firms participate in their development
and where multiple firms attempt to capture value
from them.
OpenStack is an open source software cloud com-

puting infrastructure capable of handling big data. It
is primarily deployed as an Service (IaaS) solution.
It started in 2010 as a joint project of Rackspace,
an established web hosting company, and NASA, the
U.S. governmental agency responsible for the civilian
space program, aeronautics and aerospace research. As
it evolved, the project attracted much attention from
the industry. By the end of 2017, OpenStack counted
with more than 82,000 contributors and 670 support-
ing companies. Furthermore, more than 20 million
lines of code were contributed by developers in 187
countries5.

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 4 of 22

Both private companies (e.g., AT&T, AMD, Canonical,
Cisco, Ericsson, HP, IBM, Intel, VMware, Citrix, and
NEC, among many others) and research-intensive orga-
nizations (e.g., NASA, CERN, Johns Hopkins University,
Instituto de Telecomunicações, Universidade Federal de
Campina Grande, and Kungliga Tekniska Högskolan,
among others) work together with independent, non-
affiliated developers in a scenario of pooled R&D. They
work in the open source way, that is, emphasizing
development transparency while giving up intellectual
property rights. Paradoxically, even though OpenStack
emphasizes collaboration in the joint development of a
large open source ecosystem, many participating firms
also compete with each other. Among others, there is
competition among providers of public cloud services
based on OpenStack (e.g., HP, Canonical, and Rackspace),
among providers of specialized hardware complement-
ing OpenStack (e.g., HP, IBM, and Nebula), and among
providers of complementary commercial software
plug-ins that complement OpenStack (e.g., VMware,
Citrix, and Cisco) (see [16, 38] for related research
addressing cooperation among competitors within
OpenStack).
We decided to address OpenStack due to its per-

ceived novelty, its highly inter-networked nature (i.e.,
an ecosystem involving many firms and individual con-
tributors), its heterogeneity (i.e., an ecosystem involving
both startups and high-tech corporate giants), its mar-
ket size ($1.7bn, by 20166), its complexity (i.e., involv-
ing different programming languages, different operating
systems, different hardware configurations) and size (20
million lines of code contributed by more than 82,000
developers).
From the early beginnings of OpenStack, the project

adopted a liberal six-month, time-based release cycle with
frequent development milestones that raised much dis-
cussion among its developers. We found it an interesting
case to study release management within the overlap of
open source software, software ecosystems, and complex
software systems.

4 Methodological design
This empirical case study was guided by the broad
research question on “How OpenStack implemented
a time-based release strategy?” A particular emphasis
was given to the release management process per se
as well as to the infrastructural tools supporting it.
Tools are focal as the OpenStack community attempts
to automate the release management process as much as
possible7.
Our efforts were built on top of publicly available

and naturally occurring archival data derived from the
OpenStack project. These data are not a consequence
of our own actions as researchers, but are created and

maintained by the OpenStack community in their own
pursuits in developing a cloud computing infrastructure.
We took into account many methodological notes in case
study research that legitimate the use of archival data
when studying a case [39–43].
We started by ’digesting’ many websites officially

related to OpenStack (e.g., https://www.openstack.org/,
https://wiki.openstack.org and http://docs.openstack.
org/), expanding later to other websites. When select-
ing the initial sources (i.e., departure points), we took
into consideration key guidelines on how to conduct
qualitative empirical research online [44, 45]. From
the initial sources, we followed several links to col-
lect further information. The links often led to blogs
maintained by organizations and individuals that recur-
rently contribute to OpenStack. Relevant data was
meticulously organized in a database for later analysis
[46, pp 94-98].
From our initial screening of qualitative data, we were

able to: (1) make sense of the industrial background in
which Openstack is embedded, (2) make sense of the
complex software development processes that steer the
project evolution, (3) survey complex inter-organizational
arrangements within the project, and (4) understand the
role of many of the software tools that support its software
development processes. After getting familiar with many
social-technical issues within OpenStack, we analyzed the
collected data with the lenses of extant knowledge in
release management and open source software.
Given the scarcity of theoretical and empirical knowl-

edge addressing release management in open source soft-
ware [5, 10], we explored and narrate the evolution of
release management in practice. Our rich narrative on
how OpenStack implemented a six-month, time-based
release cycle with frequent development milestones can
increase our ability to understand and explain release
management within the context of complex open source
software ecosystems.
To enhance the validity of our narrative, we asked early

four OpenStack developers (two of them with release
management responsibilities) to read and comment our
Sections 5 and 6 in advance. One of our informants
joined the project in November 2010 with the respon-
sibility of organizing release management at OpenStack
and reports since then to the technical committee of
the OpenStack foundation. Another of our informants
joined OpenStack in 2014 and currently leads a sub-
project and recurrently attends cross-project team meet-
ings dealing with release management. While the first
one has a more managerial view on release manage-
ment at OpenStack, the second one sees release manage-
ment from the complementary developers’ perspective.
In this way we reduced possible misinterpretations of the
collected data.

https://www.openstack.org/
https://wiki.openstack.org
http://docs.openstack.org/
http://docs.openstack.org/

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 5 of 22

Our description of releasemanagement in the particular
case of OpenStack, that implemented a time-based release
management strategy is organized around a dual view
that aggregates two different aspects of release manage-
ment. First, a view on release management as a complex
and evolving inter-organizational socio-technical process;
and second, an infrastructural view on the tools that
support it.

5 Results: a processual view
Our results aim at contributing to a better under-
standing of release management within complex open
source software ecosystems. Release management can
take many distinct forms and many lessons can be
learned from how it is done in an open source software
community [13].
Given that release management at OpenStack evolves

dynamically as a ‘moving target’, we organized our nar-
rative across three phases of OpenStack. First, we briefly
describe its early days as an internal project of NASA.
Then, we look at its bootstrap as an open source
software project largely steered by Rackspace (at that
time supplying NASA with cloud computing services).
After that, we concentrate our attention on describ-
ing release management at OpenStack at a more recent
and mature phase (i.e., release management of Open-
Stack as by the end of the year 2017). We provide a
narrative on the evolution of release management at
OpenStack while purposively focusing on its more recent
and mature phases from which more lessons can be
learned.

5.1 Early days at NASA
The OpenStack project was officially announced on
July 21, 2010 at the Open Source Convention (OSCON)
(a business and technical oriented convention organized
by O’Reilly Media that annually gathers many open source
contributors across different cities of USA)1. However,
the technology behind OpenStack started much earlier
at NASA (a well-known space and aeronautics research
agency) and Rackspace (a popular provider of hosting
services).
At that time, Anso Labs had published the beta code for

Nova, a cloud computing fabric controller implemented
in the C, C++ and Python programming languages. Anso
Labs was later acquired by Rackspace on February 9, 2011
and since then Nova remains a core component of Open-
Stack. Meanwhile, Rackspace also wanted to rewrite the
infrastructure code running its offering for cloud servers,
and open sourced the existing cloud files. This open
sourcing of code, previously held in-house, led to the
creation of Swift that is OpenStack’s scalable redundant
object storage system. As an open source project, Swift
was able to address the exceptionally demanding storage

needs of NASA. The first release of OpenStack had then
twomain components:Nova and Swift. This is howOpen-
Stack started (see [47] for a more detailed narrative on
howOpenStack started at the hands of NASA, Anso Labs,
Rackspace, and others).
These initial software components were not developed

in the open source arena but in-house. The software was
released once new features were ready. This is in a big
contrast with OpenStack today, in terms of release strat-
egy and the overall development transparency. Nowadays,
OpenStack releases trail a six-month release schedule and
tarballs8 are available for every single code commit. In the
particular case of Nova at NASA, its release management
was influenced by procedural requirements at NASA:
all software developed in and for NASA should follow
comprehensively documented procedures such as Release
Management (SWE-085), SWDevelopment-Management
Plan (SWE-102), and Release of NASA Software (NPR
2210) among many others9.
Nowadays, NASA has its own documented proce-

dures on how to release open source software. So far,
NASA has released more than 60 software projects under
the NASA Open Source Agreement (NOSA), a non-
permissive license created and approved by the Open
Source Initiative (OSI) in 2013. Note, however, that in the
early days of OpenStack at NASA, the release of software
to the open source community was uncommon10.

5.2 Bootstrap as an open source project
The mission of OpenStack, in the announcement in July
2010, was to “to produce the ubiquitous Open Source
Cloud Computing platform that will meet the needs of
public and private clouds regardless of size, by being
simple to implement and massively scalable.” The first
OpenStack design summit was held in Austin, Texas,
USA during July 20101. The announcement highlighted
prior work made in NASA. Citrix, a long standing part-
ner of Rackspace on virtualization technologies, joined
the project. The project kept growing with more and
more partners (e.g., Intel, Cisco, Nebula, CloudScale, HP,
Mirantis, Canonical, VMware, RedHat, and IBM among
others) and the OpenStack foundation was founded as
a non-profit corporate entity, established in September
2012, to manage and promote OpenStack and its com-
munity. (see [16, 47] for more details on how OpenStack
open source project grew over time). For protecting the
brand, OpenStack holds the trademark and hires staff that
deal directly with release management from the develop-
ment side (engineering, design, infrastructure, ecosystem
management, etc.) as well as the marketing side (events,
communications, launching, promoting, etc.).
As OpenStack was growing in terms of community,

code, and complexity. Thierry Carrez, an engineer with
much experience in Linux distributions (Ubuntu and

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 6 of 22

Gentoo) was hired by Rackspace to do release manage-
ment at OpenStack. As noted in the following quotation,
and in congruence with prior research on why open
source software projects should adopt time-based releases
[5], a time-based release strategy sets a cadence, a rhythm,
a pulse of contributions across the project. Moreover, the
setting of release dates allows developers to shift their
focus from feature development to bugfixing – all towards
a better quality of the software being released.

’The most obvious value of release cycles is to help pro-
ducing a release. It allows us to shift focus from feature
development to release-critical bugfixing, which results
in better quality in the end release. But to me, the most
important value of release cycles is that they create
a common rhythm of contribution, a common pulse,
which is essential for our virtual and global community
to feel part of the same project’ — Thierry Carrez , 1
July 201311.

The project started with a 3-month release cycle, but
at the third OpenStack Design Summit in Santa Clara,
April 26-29, 2011, they decided to switch from a 3-month
cycle to a 6-month coordinated release cycle, with more
frequent milestone deliveries in the middle12. Given the
resources of the community at that time, developers had
difficulties to land new features in such a short time
window. As evidenced by the following quotation, the
long time stabilizing and maintaining what was devel-
oped so far drove the community towards the longer 6-
month release cycle. In this sense, the releasemanagement
cycle length started by resembling Linux (2–3 months)
but evolved to what we can see at other reference open
source projects such as Ubuntu, GCC, X.org and GNOME
(6 months) [5].

’You may remember that we used to have 3-month
cycles at the beginning of OpenStack. Currently, it takes
us about 4 weeks after we stop adding features to come
up with a valid release candidate. In a 6-month release
cycle, it’s acceptable to be feature-frozen for onemonth.
In a 3-month release cycle, less so. Releasing every 3
months also means maintaining twice as many stable
branches. So if more people addressed critical bugs dur-
ing the rest of the cycle (whenwe are not feature-frozen)
and more people helped with stable branch mainte-
nance and security updates, we could definitely con-
sider going for 3-month cycles. I like to have a Design
Summit at the beginning of each cycle (I think it helps
us deliver better results), so we’d probably also have
to convince the Foundation to pay for twice as many
developer events’ — Thierry Carrez , 1 July 201313.

5.3 Reaching maturity as complex open source project
The first release, code-named ’Austin’, appeared four
months after the OpenStack announcement at OSCON,
with plans to release regular updates of the software every
few months. ‘Austin’ was already a sizable release as it
inherited the code base from NASA’s Nebula platform as
well as the code base from Rackspace’s Cloud Files plat-
form. Firms such as Canonical, SUSE, Debian and Red
Hat, all with a recognized role in the open software world,
were among the first organizations engaging with Open-
Stack. Citrix, HP, and IBM were among the first high-tech
giants that contributed to development of the project.
As OpenStack increased both in size and complexity,

the forthcoming releases code-named ‘Bexar’, ‘Cactus’, and
‘Diablo’ came at irregular intervals that ranged from three
to five months14. As captured by the following quote,
the ’Diablo’ was the first of many forthcoming releases
launched within a six months release cycle.

“This release marks the first six month release cycle of
OpenStack. The next release, Essex, will also be a six
month release cycle and development is now officially
underway. While Diablo includes over 70 new features,
the theme is scalability, availability, and stability.” —
Devin Carlen, 29 September 201115.

OpenStack is so far orchestrated by the Git distributed
version control system (aka repository) and the Gerrit
revision control system (aka code review tool). The source
code of OpenStack is hosted across dozens of reposito-
ries16. Due to the inherent complexity of a large-scale
project developed by dozens of firms and hundred of
developers, keeping everything within a single reposi-
tory would raise issues about when and where bugs are
introduced or how to trace longitudinally the develop-
ment of features. Moreover, by using a multiple repository
approach, access control can be customized to each indi-
vidual repository. New developers need not spend so
much time learning the structure of a large source code
tree, and small changes across the multiple projects would
not bother so much the other projects. Additionally,
OpenStack also attempted a modular architecture with
various components, where each project team is respon-
sible for managing its own component repository17. Some
components, such as the OpenStack Compute (aka Nova
and the computing fabric controller), are core compo-
nents on which many other components rely. To be able
to integrate with these components, modular designs and
much cross-project coordination is required.

“We started this five-year mission with two projects:
Nova (Compute) and Shift (Object Store) and over time,
the number of projects in OpenStack grew. Some of
this where parts of the existing projects that split out to
have their own separate teams and become little more

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 7 of 22

modular. Other things were good new ideas that people
had that fit within the realm of OpenStack. Like inter-
esting things that you would want to do in or with a
cloud. Over time, we built a process around that to deal
with the fact that there were so many of these projects
coming in.” — Sean Dague , 15 May 201518

OpenStack keeps refining its release management pro-
cess but it is adhering to a six-month release cycle. Each
release cycle encompasses planning (1month), implemen-
tation (3 months), and integration (2 months) where most
pre-release critical bugs should be fixed. During the ear-
lier release phase, the coding efforts are much driven by
discussion and specifications, while in a later release phase
(i.e., stabilization of release candidates) the development
turns into the bugfixing mode (as reported in other open
source projects [5, 28, 34]). At each release, developers
start by implementing the discussed and/or specified key
features while, by the end of the release, there is a peak of
bugfixing activities. To sum up, each release cycle starts
in a specification and discussion driven way and ends in a
bug tracker oriented way.
The planning stage is at the start of a cycle, just after

the previous release. After a period of much stress to
make the quality of the previous release acceptable, the
community steps back and focuses on what should be
done for the next release. This phase usually lasts four
weeks and runs in parallel with the OpenStack Design
Summit on the third week (in a mixture of virtual
and face-to-face collaboration). The community discusses
among peers while gathering feedback and comments.
In most cases, specification documents are proposed
via an infrastructure system19 that should describe pre-
cisely what should be done. Contributors may propose
new specs at any moment in the cycle, not just dur-
ing the planning stage. However, doing so during the
planning stage is preferred, so that contributors can ben-
efit from the Design Summit discussion and the elected
Project Team Leads (PTLs) can include those features
into their cycle roadmap. Once a specification is approved
by the corresponding project leadership, implementa-
tion is tracked in a feature blueprint20, where a priority
is set and a target milestone is defined, communicat-
ing when in the cycle the feature is likely to go live.
At this stage, the process reflects the principles of agile
methods.
The implementation stage is when contributors actu-

ally write the code (or produce documentation and test
cases, among other software-related artifacts) mapping
the defined blueprints. This phase is characterized by
milestone iterations (once again a characteristic of agile
software development methods). Once developers per-
ceive their work as ready to be proposed for merging
into the master branch, it is pushed to OpenStack’s

Gerrit review system for public review21. It is important
to remark that in order to be reviewed in time for a
milestone, the change should be proposed a few weeks
before the targeted milestone publication date. An open
source software collaboration platform22 is used to track
blueprints in the implementation stage. In a more open
source way and not to discourage contributors, it is worth
remarking that not all features have to go through the
blueprints tracking: contributors are free to submit any
ad hoc patch. Both specifications and blueprints are tools
supporting the discussion, design, and progress tracking
of the major features in a release. Although the big cor-
porate contributors are naturally more influential in the
election of PTLs steering the tracking process, this should
not prevent other contributors from pushing code and
fixes into OpenStack. Development milestones are tagged
directly on the master branch during a two-day window
(typically between the Tuesday and the Thursday of a
milestone week). At this stage, heavy infrastructure tools
that continuously integrate and test the new code play a
very important role23.
At the last development milestone, the OpenStack

release management team applies three feature freezes:
FeatureFreeze, SoftStringFreeze andHardStringFreeze that
gradually constrain the evolution of the code base as
described in Table 1. At this point, the project stops
accepting new features or other disruptive changes. It
concentrates on stabilization, packaging, and translation.
The project turns then into a pre-release stage, termed as
‘release candidates dance’24. Contributors are encouraged
to turn most of their attention to testing the result of the
development efforts and to fix release-critical bugs. Crit-
ical missing features, dubious features, and bugs are doc-
umented, filed and prioritized. Contributors are advised
to turn their attention to the quality of the software

Table 1 The three feature freezes of OpenStack

Freeze Description

FeatureFreeze Project teams are requested to stop
merging code adding new features, new
dependencies, new configuration options,
database schema changes, changes in
strings ... all things that make the work of
packagers, documenters or testers more
difficult.

SoftStringFreeze After the FeatureFreeze, translators start to
translate the strings. To aid their work, any
changes to existing strings is avoided, as this
will invalidate some of their translation work.
New strings are allowed for things like new
log messages, as in many cases leaving
those strings untranslated is better than not
having any message at all.

HardStringFreezee 10 days after the SoftStringFreeze, any string
change after RC1 should be discussed with
the translation team.

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 8 of 22

and its documentation. The development becomes mainly
bugfixing oriented and a set of norms and tools guide
this last product stabilization phase25. Between the last
milestone and the publication of the first release can-
didate, contributors are urged to stop adding features
and concentrate on bug fixes. Only changes that fix bugs
and do not introduce new features should be allowed to
enter the master branch during this period. Any change
proposed for the master branch should at least refer-
ence one bug on the bug tracking system. Once all the
critical bugs for the release are fixed, OpenStack pro-
duces the first release candidate for that project (named
RC1). Across this last stage, the repository version con-
trol system (i.e., Git) plays an important role in allevi-
ating the interruption caused by the freezes. A freeze
applies only to the stable branch so that developers can
continue their work on other the development branches
(i.e., the trunk). New features should be committed to
other branches, discussed at the planning stage, and
merged into the stable branch at the next implementation
stage.
The OpenStack release team is empowered during this

last phase. It creates a stable/* branch from the current
state of the master branch and uses Access Control List
(ACL) mechanisms to introduce any new release-critical
fixes discovered by the release day. In other words, further
changes at this stage require permission from the release
team. In the words of OpenStack, they will be treated
as feature Feature Freeze Exceptions (FFEs). Between the
RC1 and the final release, OpenStack looks for regression
and integration issues. RC1 may be used as is for the final
release unless new release-critical issues are found that
warrant an RC respinning. If this happens, a new mile-
stone will be open (RC2), with bugs attached to it. Those
RC bug fixes need to be merged in the master branch
before they are allowed to land in the stable/* branch.
Once all release-critical bugs are fixed, the new RC is
published. This process is repeated as many times as nec-
essary before the final release. As the final release date
gets closer, to avoid introducing last-minute regressions,
the release team limits the number of changes and their
impact: only extremely critical and non-invasive bug fixes
can get merged. All the other bugs are documented as
known issues in the Release Notes instead.
On the release day, the last published Release Can-

didate (RC) of each integrated project is collected and
the result is published collectively as the OpenStack
release for this cycle. OpenStack should by then be sta-
ble enough for real industrial deployments. Once the
version is released, a new cycle will commence within
OpenStack; the master branch switches to the next
development cycle, new features can be merged freely,
and the process starts again. After the release and a
period of much stress that required much coordination,

most of the community shifts again to the plan-
ning stage and many will attend the Design Summit.
A new branch has been opened already to accommodate
new developments. Even so, the launched release needs
to be maintained and further stabilized until its End of
Life (EOL), when it is no longer officially supported by
the community. OpenStack might release bugfix updates
on top of previously announced releases with fixed bugs
and resolved security issues, actions that might distract
developers working on newer items.
The overall release management process, as illustrated

in Fig. 1, follows a plan, implement, freeze, stabilize and
launch cycle between releases. Each release is then re-
stabilized with a posteriori release updates to fix bugs and
security issues. Nevertheless, the process described so far
is just the most recurrent pattern within OpenStack, the
defaultmodus operandi. The described process is actually
quite open and liberal. It acts as a recommendation for
the different teams so that whatever is developed is then
later more smoothly integrated, stabilized and released in
a coordinated fashion.
Since October 2016 (affecting the ’Newton’ release),

OpenStack actually recommends its project teams to
choose from four different release management models:
Common cycle with development milestones, Common
cycle with intermediary releases, Trailing the common
cycle and Independent release model. Most of these mod-
els follow a common six-month development cycle, some
give intermediary releases within the six-months cycle
and others are allowed to manage their own release
strategy26.

Common cycle with development milestones The offi-
cial and default time-based model followed by most
teams. It results in a single release at the end of the
development cycle and includes three development
milestones (as in Fig. 1).

Common cycle with intermediary releases For project
teams wanting to do a formal release more often, but
still want to coordinate a release at the end of the
cycle from which to maintain a stable branch. Rec-
ommended for libraries, and for more stable compo-
nents, which add a limited set of new features and do
not plan to go through large architectural changes.

Trailing the common cycle For project teams that rely
on the completeness of other components (e.g., pack-
aging, translation, and UI testing) and may not pub-
lish their final release at the same time the other
projects. For example, teams packaging and deploy-
ing OpenStack components need the final releases
of many other components to be available before
they can run their own final tests. Cycle-trailing
project teams are given an extra two weeks after the
official release date to request the publication of their

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 9 of 22

Fig. 1 Overview of the OpenStack standard release cycle

own releases. They may otherwise use intermediary
releases or development milestones.

Independent release model For project teams that do
not benefit from a coordinated release or from stable
branches. They may opt to follow a completely inde-
pendent release model. Suitable for example for the
OpenStack’s own infrastructural systems (e.g., the
ones supporting upstream testing and integration) as
well for components with little dependence on the
overall Openstack core architecture.

“We still have a coordinated release at the end of the six
months for projects that are willing to adhere to those
deadlines and milestones, but the main change is that
we will move from managing most of them to refine
processes and tools for each project to be able to pro-
duce those releases more easily. The development cycle
will still be using a six months development cycle, even
if some projects might do intermediary releases where
it makes sense, but will still organize almost everything

under a six months development cycle between design
summits.” — Thierry Carrez , 15 May 201527.

In an attempt to sump up and aggregate key elements of
our narrative, the timeline in Fig. 2 highlights key events
and turning points on the evolution of release manage-
ment at OpenStack. From the first days, when the overall
development was shaped by the official software develop-
ment processes institutionalized at NASA, then the spin-
off as an open source project with releases at every three
months, then the shift towards a more liberal release cycle
of six months, and later, after a period of much growth, the
co-existence of multiple release models trailing a common
six-month release cycle.

6 Results: infrastructural tools
Given that release management at OpenStack relies on
a vast tool-chain, we start by addressing tools that are
mostly used at the beginning of the release cycle, in dis-
cussion, planning and specifying. After that, we cover
tools that are more widely used during the implementa-
tion and stabilization of new features at the later stage of

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 10 of 22

Fig. 2 OpenStack releases and key events shaping them

the release cycle. These include tools for version and revi-
sion control, reviewing and testing. The closer developers
are to the end of the release cycle, the more important
is the role of the tools supporting continuous integration,
testing, and code-reviewing. We close with infrastruc-
tural tools supporting release management, elaborating
on the novel OpenStack ’micro-tagging’ approach and a
new ’release notes manager’ tool developed within the
community as part of their own release management
endeavors.

6.1 Discussion, planning and specifying
Starting a new release cycle emerges with many specifica-
tions and discussions. At this planning stage, developers
gradually leave the integration and stabilization mode to
enter again into the planning and development mode.
Besides considering what should be done, developers con-
cerned with release management consider what can be
done on time to be included in the upcoming release.
As the planning stage partially overlaps with the Open-

Stack design summit, many of the discussions take place
face-to-face. However, for a number of reasons (e.g., the
discussions at the summit are fragmented in multiple par-
allel sessions and many developers are not able to attend
the summit at all), developers use a number of infrastruc-
tural tools that facilitate the discussion and formalization
of what should be developed during the next milestones.
Even if the different project teams are free to use their

own tools in an ad hoc manner, multiple communication,
coordination, and collaboration tools are provided by the
OpenStack infrastructure team. Among others, develop-
ers rely on LaunchPad for blueprints, Sphinx for specifi-
cations and StoryBoard for task tracking. As seen also in
other open source projects, communication and informa-
tion sharing is supported by standardWeb, Wiki, IRC and
e-mail systems.
According to Poo-Caamano [10], coordination across

multiple project teams requires a common infrastructure
to facilitate communication to flow between the release
team and the projects. Asynchronous channels, such as
mailing lists, act as egalitarianmedia for discussion among
a wide range of participants as the messages can be
archived and made searchable. Conversely, synchronous
channels, such as face-to-facemeetings, may be richer, but
they are less inclusive as they may exclude participants
that cannot attend a physical face-to-face discussion. Fur-
thermore, as English is de facto the lingua franca of most
open source projects, asynchronous channels might be
preferred by developers that may not be as fluent as their
native English-speaking team mates [10].

6.2 Orchestrating distributed work, tagging and version
control

Managing the release of software at scale requires a good
orchestration of its evolving code base. Since the early
days of OpenStack, Git28 plays an important role in

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 11 of 22

release management at OpenStack. In a highly distributed
software development environment with thousands of
developers, the branching and merging capabilities of
Git are essential for governing what code should be at
each branch of the official OpenStack repository. Cloning,
fetching and pulling from the official repository main-
tained by the OpenStack downstream to the developers’
local environment, as well as branching, committing and
pushing upstream, are common OpenStack development
operations that rely on Git.
As other distributed version control systems, Git has the

ability to tag specific points in the source code history as
being important. Therefore, it is a common procedure to
do ’versioning’ (ie., naming the release) using Git tags29.
The use of tags allows both developers and users of Open-
Stack to track the incremental evolution of the software
being developed intuitively. Naming different versions of
the software is essential for both developers and users of
OpenStack that often need to deal with multiple versions
of OpenStack.
As Git tags apply only to a commit and are not branch-

aware30, OpenStack developers encode key release infor-
mation such as project name, release series, branch and
commit hash, within plain YAML31 text files. Devel-
opers produce a large variety of code that is hosted
across multiple Git repositories. Given the complexity
of the OpenStack, such repositories are highly inter-
dependent and tightly integrated. For example, a repos-
itory might host a library used by multiple teams in
multiple components, or a core Application Program-
ming Interface (API) might be ’called’ by the many
distinct services that are implemented in OpenStack.
Therefore, once developers formally release their work,
their deliverable may span across multiple repositories.
At the operational level, this means that developers
might need to encode multiple (project, commit hash)
tuples in a YAML file. The more repositories develop-
ers change, the higher number of YAML files needs to

be delivered or the more complex a single YAML file
will be.
Enriching this description of release management

in practice at OpenStack, the following illustrative
YAML file 1, elucidates how the neutron project
team delivered the version 10.0.0.0rc1 from the
ocata stable release series that pointed out to the
commit 4ae6790d82542738edbb531a829b60ff8a44a3fe
from the neutron Git repository and the commit
8cfa2de66becce06f3e11bbab7562b11649e54c9 from the
neutron-fwaas Git repository32. When the different
project teams encode this information in their
deliverables, the release management team is able to
verify better the completeness and consistency of the
overall contributions that are to be released. Furthermore,
as this information is provided openly33 in a standardized
and machine-readable way, it enables a high level of
automation of the release management activities.
The ability of Git to mark specific points in the source

code history as tags is accompanied with support for
annotating and signing them using GnuPG34 crypto-
graphic keys. On the one hand, the tagging functionality
of Git is often used to mark release points (v1.0, and so
on), while on the other hand, the annotating and sign-
ing functionalities allow developers to add securely their
name, email and tagging message (often the version). The
annotating and signing functionalities provide security in
the sense of integrity checking, where the other develop-
ers can check if the tag and the corresponding code were
really issued by a trusted developer. If the Git branching
functionality allows the developers to deal with n differ-
ent versions of the repository at the same time, the tagging
functionality allows developers to mark a point in time
in the repository that is not aware of its branch. It is a
good practice for developers to tag and sign to mark a
released version and, if post-release bug fixing actions are
required, to create a bug-fixing branch at the tag35. In
the particular case of OpenStack, the use of tags gained

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 12 of 22

much importance for release management. In the begin-
ning of OpenStack, it was a selection of core and mature
repositories at a given time that dictated what was in
the official OpenStack release. This is called the inte-
grated release model. Since the OpenStack Liberty release
(October 2015), tags signed by the Technical Committee
(TC) dictate what is the official OpenStack release. This
is called the big tent release model. In other words, since
the Liberty release, OpenStack software releases are not
seen as a selection of core repositories, but as code tagged
by the TC across all the repositories of OpenStack. It is
important to note that only software officially released by
OpenStack can use the OpenStack trademarks for exam-
ple for marketing of the software using the OpenStack
name or logo36.

6.3 Reviewing
Releasemanagement includes deciding if a certain piece of
code is ready to be released or not. In other words, stake-
holders in the release management must ensure whether
the quality of certain software is at an acceptable level to
be released or not. Therefore, release management and
peer review are inseparable processes [20, 22, 48, 49].
Many successful open source software projects employ
formal code review activities prior to the release37. Core
reviews are effective means for quality assurance, knowl-
edge dissemination, social relationship building, achieving
better designs, and ensuring maintainable code in long
term [50]. In the OpenStack case, peer review is handled
by Gerrit38, a tool that hides many of the complexities of
reviewing code by directly using Git commands under a
web-based tool designed solely for the purpose of sup-
porting code review activities. As in many other open
source projects, the submitted code is reviewed before it
is accepted into the official code base prior to the release
announcements. While in many other projects develop-
ers submit more atomic commits or patches for review,
in the case of OpenStack, developers submit Git branches
that are more bulky units, to be reviewed. To do so, Open-
Stack developed and recommends using the Git review
tool for submitting code. This tool is invoked as a Git sub-
command and it handles all the details of working with
Gerrit. The process is quite straightforward: developers
implement new features in their own local Git branch,
commit their changes locally and then simply invoke the
git review subcommand that will submit the ’patchset’ to
Gerrit. Developers will then receive an acknowledgment
of the change that was submitted for review together with
an URL pointing to their submission status in Gerrit (note
some parallels with academic peer review). Developers
also receive one or more emails from the automatic test-
ing system, reporting the testing results of the proposed
changes. All this takes place in a sequence towards the
future landing of the code and its later release.

Release management constrains the code review pro-
cesses. A change should be proposed a few weeks before
the targeted milestone publication date in order to be
reviewed in time and included in the same milestone.
Furthermore, the use of release management freezes pur-
posively minimizes the time that code reviewers spend
’drowned’ in late code reviews for features proposed late.
After the freezes, new feature code reviews should be
rejected by the review team and postponed until the next
series development opens. In order for the teams to inte-
grate, stabilize and launch what was implemented so far,
code review efforts should be limited to existing code and
bug fixing submissions. Features implemented late can
introduce regression bugs close to the release date, under-
mining the quality of OpenStack software as a whole.

6.4 Testing, gating and continuously integrating
While code reviews lead to human judgments on what
code is ready to be released or not, the Quality Assur-
ance (QA) and the Continuous Integration (CI) operations
produce semi-automated judgments on whether a piece of
code is of sufficient quality be released or not. The mis-
sion of Quality Assurance is to “develop, maintain, and
initiate tools and plans to ensure the upstream stabil-
ity and quality of OpenStack, and its release readiness at
any point during the release cycle”39. This mission under-
lines the importance of automation in complex software
development settings:

“OpenStack projects have robust automated testing. In
general, we believe something not tested is broken.
OpenStack is an extremely complex suite of software
largely designed to interact with other software that can
be operated in a variety of configurations.Manual local-
ized testing is unlikely to be sufficient in this situation.”
— OpenStack Project Team Guide, as last edited on 20
Sep 201740.

Developers should test their contributions properly
before submitting them for review, doing not only unit or
functional tests but also performing integration and per-
formance tests against the official code base. Furthermore,
style checks should also be employed for ensuring suf-
ficient consistency on source code jointly developed by
multiple developers. However, as the OpenStack code
base is enormous with more than 20 million lines of code
by October 2017, and as many of the OpenStack cloud
computing features require vast resources (e.g., clusters of
multiple machines, multiple hypervisors, and hardware-
accelerated virtualization among others resources typ-
ically found in data centers), not all developers have
access to sufficient resources to run all the tests. Fur-
thermore, code reviewers cannot insure or assume that
developers have performed all of the relevant testing
prior to their code submissions. Many of the OpenStack

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 13 of 22

projects implement therefore batteries of tests (aka sets
of testing jobs) that automatically run on every change
to the project41. These test batteries are often devel-
oped in cooperation and coordination with the Qual-
ity Assurance, Infrastructure and Release Management
teams.
In OpenStack, test automation is implemented in Jenkins

and Zuul. Test results appear in http://Gerrit allowing
developers to easily trace their contributions. Jenkins
automation server does the most atomic work of building
and executing testing jobs, including all unit, integration,
and code-style tests. Jenkins is partly controlled by Zuul
which determines what jobs are run and when. Zuul acts
also as a gateway betweenGerrit and Jenkins. In one direc-
tion, it listens to the Gerrit event stream and triggers jobs
on Jenkins. In the other direction, Zuul listens to Jenkins
testing jobs results and adds a machine-made review to
Gerrit. Test results are reported to Gerrit by Zuul in the
form of a ’machine’ vote that will complement the human
code-reviews. Only after the code reviews have been com-
pleted and the code passed the Jenkins/Zuul tests, the ’gate
opens’ and the code can finally ’land’ into the official mas-
ter branch. A stable branch will be cut by the end of the
release cycle from this master branch.
After releasing, keeping the stable branches in good

health is an ongoing effort. Developers can see what
bugs are currently causing gate failures and they can pre-
vent code from merging into stable branches. Even if the
tracing of bugs varies from team to team, the Launch-
pad platform42 remains the most used infrastructure for
tracking bugs. As fixing bugs in stable branches often
requires much cooperation and coordination among dif-
ferent teams, OpenStack developers rely on Etherpad43
dynamic documents that link to information on current
bugs and in-flight fixes across the OpenStack ecosystem.
Developers are encouraged to discuss bug fixing issues on
the official IRC and mailing lists which are archived on
the OpenStack website. As pinpointed by Poo-Caamaño
et al. (2017) [10], release management information should
be communicated across and made available to the overall
ecosystem participants.
While the code reviews orchestrated by Gerrit provide

individual formative feedback on the code-contributions,
the continuous integration tests run by Jenkins and Zuul
providemachine-made (aka testing bots) summative feed-
back of the code contributions. Armisen et al. (2016) [51]
studied the the interplay between formative and summa-
tive feedback at OpenStack. They suggest that summative
feedback (i.e., testing bots) influences how developers take
formative feedback (i.e., code reviews).
While a code review vote is highly personal and might

vary from reviewer to reviewer, the automated testing
results are more often unassailable. In an analogy with
the academic world, we could say that code that does

not pass the continuous integration tests is code that
tends to be “desk rejected”. While code contributions
are reviewed once in Gerrit, Jenkins and Zuul run the
automated tests twice, before and after the approval by
the reviewers. The OpenStack community claims that
continuous integrations tests are in line with the open
and egalitarian nature of the OpenStack project as, after
all, it should not matter where the code comes from,
from which particular developer or company, it needs
to pass the same tests to make it to the official code
base.

“OpenStack projects do not permit anyone to directly
merge code to a source code repository. Instead, any
member of a core reviewer team may approve a change
for inclusion, but the actual process of merging is com-
pletely automated. After approval, a change is automat-
ically run through tests again, and only if the change
passes all of the tests, is it merged.

This process ensures that the main branch of devel-
opment is always working (at least as well as can be
determined by its testing infrastructure). This means
that a developer can, at any point, check out a copy of
the repository and begin work on it without worrying
about whether it actually functions.

This is also an important part of the egalitarian struc-
ture of our community. With no member of the project
able to override the results of the automated test sys-
tem, no one is tempted to merge a change on their own
authority under the perhaps mistaken impression that
they know better than the test system whether a change
functions correctly.” — OpenStack Project Team Guide,
as last edited on 20 Sep 201740.

OpenStack is a large, complex and very heterogeneous
project aggregating software for very different purposes
and written in many different programming languages.
Different project teams might adopt different testing tools
depending on their particular context. For example, the
Horizon project that implements the OpenStack’s Dash-
board, which provides a web-based user interface to core
OpenStack services such as Nova, Swift, and Keystone
among others, adopted the Selenium user interface testing
automation framework for web applications44. As Hori-
zon is developed on top of the Django web framework45
and it outputs dynamic web user interfaces, Selenium can
be used to automate graphical user interface tests that run
on top of the most modern web browsers. In other words,
this tool allows Horizon contributors to write software
’bots’ that test the evolving graphical user interface. That
is, developers simulate certain user behaviors and check if
the interface ’reacts’ as expected.
Selenium uses the so-called locators to find and match

the elements of a web page to interact with it for testing

http://Gerrit

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 14 of 22

purposes. Selenium can hook with many user interface
elements of dynamic HTML pages (e.g., Id, Name, Link,
DOM, XPath, CSS). Therefore the Selenium user inter-
face testing ’bots’ need to co-developed vis-à-vis with the
user interface. Radical changes on the many elements of
a graphical user interface can turn exiting user interface
tests (orchestrated by Selenium in the OpenStack Horizon
case) unreliable, unless the user interface and its tests are
co-developed in resonance with each other. The follow-
ing illustrative commit log from the OpenStack Horizon
Git repository 1 illustrates the efforts of an OpenStack
developer to maintain the user interface and its tests in
congruence with each other. Regarding both release man-
agement and user interface testing automation, the use of
the above-mentioned freezes along with the release man-
agement cycle can ease the writing of the user interface
testing ’bots’ as the user interface testing elements get
frozen and stable.

6.5 Cross-team release management
The release management team filters, assesses, validates
and releases the overall code base. The team manages
the release process for the many deliverables proposed by
each project team at a given development cycle. The team
also provides and maintains the many tools that support
the overall release management duties (see Table 2). The
release management team acts as a cross-project organi-
zation that spans the different project teams. It relies on
a liaison from each team project to help with coordina-
tion and release-related tasks. This release management
liaison is often the Project Team Leader or someone
formally designated by the Leader. Release management
liaison should exhibit leadership especially within the
project team, exhibit communication skills within and
across teams, follow the release guidelines, keep track
of the development cycle tasks, attend the cross-project
meetings (e.g., the technical committeemeetings that gen-
erally happen on Tuesdays) and ensure that known bugs
are correctly reported and triaged. Release management
liaisons need to deal with many of the interdependencies
across the different OpenStack project teams and their
repositories.
In this way, much of the work with release manage-

ment remains largely manual, far from fully automated.
The release management team develops and maintains a
significant number tools and scripts to handle the release
process, butmuch of the work remainsmanual, something
that the OpenStack community acknowledges and intends
to automate further. Since the release of the Liberty series
(12th release of the project on 16 October 2015), Open-
Stack adopted a novel ’micro-tagging’ approach together
with a novel tool developed by the release management
team to support the approach. This tool was named
Reno and it can be seen as a release notes manager that

Table 2 Tools supporting release management at OpenStack

Tool Tool description Roles

Launchpad Collaboration and hosting
platform

Bug tracking and
discussion of blueprints.

Story board Task tracker Task tracking across
multiple teams,
repositories, and branches.

Git Distributed code
repository system

Hosting, version and
revision control.

GnuPG Hybrid-encryption
software

For annotating and
signing Git tags.

Gerrit Code review system Orchestrates peer review
of proposed code
changes over Git.

Jenkins Automation server Runs jobs of continuous
iteration testing.

Zuul Pipeline oriented gating
and automation

Acts as a configurable
gateway between Gerrit
and Jenkins.

Logstash Pipeline and oriented
analysis of jobs

Analysis of logs.

Etherpad Collaborative online editor
(real-time)

For each stable branch, it
aggregates information
on current bugs, failures of
the continuous
integration jobs, known
problems/issues, and on
recently closed
problems/issues as well.

Reno Release notes manager. Manages release notes in
a standardized format.

Sphinx Documentation and
specification generator.

Integrates with Reno to
generate reports
containing release notes
for specific branches and
versions.

Mailman Software for managing
electronic mail discussion
and e-newsletter lists

Official channel for
discussion among
developers. Results from
code reviews, continuous
integration testing, and
code-merging are
delivered by software bots
via e-mail.

Freenode IRC Textual discussions of
developer across different
channels (achievable
material).

MediaWiki Wiki software Collaborative
documentation.

encourages developers to provide more detailed and accu-
rate release notes for each software deliverable being
released.
Also Git has the ability to tag specific points in source-

code history. These Git tags point out to a specific commit
and thereafter do not change even when the correspond-
ing Git branch moves on. While commits are identified

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 15 of 22

by unique hash values, tags can be identified by tex-
tual labels46. OpenStack contributors use Git tags as
mechanisms to define the release points with descrip-
tive names such as “v3.1.4b1”, “tc:approved-release”,
“:ref:‘tag-vulnerability:managed’ ” or “:‘tag-stable:follows-
policy‘”47. As pointed out before by Poo-Caamaño (2016)
[33] that also studied release management at OpenStack,
the recent replacement of the big ’official release’ by
a tagging system where each sub-project is marked as
’release managed’ by the technical committee addresses
possible misconceptions from the distributors, integra-
tors, and operators of OpenStack. After all, the concept
of ’official release” can lead to wrong assumptions and
its users can assume incorrectly that all of these ’official
release’ sub-projects shared the same level of quality and
maturity [33, p111]. The concept of an integrated ’offi-
cial release’ worked better while OpenStack was smaller
project, but as the ecosystem grow the definition of a final
and complex modular system becomes blurry, the tagging
approach is in this sense forces the users of OpenStack to
not look at the new release of OpenStack but at the new
coordinated releases of OpenStack.
With the Liberty release, many different OpenStack

project teams were invited to use Reno for providing
release notes that are directly attached to the Git source
code tree. This implies that a patch can include a Reno
file, or a series of them, containing textual information
explaining what is the expected impact of this particu-
lar incremental change. The standardized use of release
notes as orchestrated by Reno, as well as the use of
Git tags that are signed by centrally managed OpenPGP
keys maintained by the OpenStack Infrastructure team,

pave the way for the overall standardization, access con-
trol and automation of cross-project release management
processes.
There are several important sections that a release

description as a Reno file can include, to become auto-
matically associated with the release version based on the
Git tags applied to the repository. With this approach, it
is not necessary to track changes manually using a bug
tracker or other tool, as release notes are stored next to
the code being developed and encoded in a human and
machine readable way. Developers can write down their
release notes at any time (hopefully while the understand-
ing of what was developed remains fresh), store them close
to the artifacts being developed, and automatically deliver
them to the release management team when appropriate.

7 Discussion
In this paper, we investigated release management at
OpenStack while paying special attention to its processes
and infrastructural tools. Our findings complement the
current body of empirical knowledge addressing release
management in the context of open source software
[5, 10]. As release management practices are connected
to other software engineering practices such as ‘planning,
code-reviewing, continuous integration, quality assur-
ance, documentation and translation, our results might
connect with other issues of interest in the Software
Engineering and Free/libre/open source software (FLOSS)
research communities.
Prior work has already inquired on OpenStack release

management issues (see [16, pp 10-11] for work bring-
ing up collaboration issues and [33, pp 80-82] for work

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 16 of 22

pointing out communication issues). However, and to the
best of our knowledge, this is the first paper paper that
explicitly aims at describing how a large and complex open
source software ecosystem refined its release model over
time. We longitudinally followed OpenStack technology
from its inception at NASA to its bootstrap as an open
source project and its moremature phase characterized by
a liberal time-based release strategy where multiple cycles
co-exist.
When integrating with prior related literature, our

results confirm the pivotal role of freezes within the
release management process (cf. [13, 37]). The use of
the three freeze mechanisms by the release manage-
ment team (i.e., “FeatureFreeze”, “SoftStringFreeze”, and
“HardStringFreeze”) encourages developers to progres-
sively change their production focus from new develop-
ments to integration and stabilization of that what was
developed so far (see Table 1). In our case, the use of
freezes forces developers that want to see their work in
the next release to make three major shifts in the focus of
the production: (1) from the individual component level to
the overall integration as a whole, (2) from developing new
features to ensuring their landing, integration and stabi-
lization, and (3) from individual work, or collaboration
within smaller teams, to coordination across the overall
community. Our investigation found the use of freezes
particularly helpful for the practice of user-interface test-
ing automation (see Section 6 for a short account on the
efforts of the Horizon project team to automate the testing
of dynamic HTML user interfaces).
Also, in the light of prior work, the release management

process ofOpenStack can be considered a hybrid of feature-
based and time-based release management [32, pp 23]. In
addition to regular releases every six months, OpenStack
also attempts to introduce new features at each regu-
lar release. At the planning stage, leaders of each project
team choose a set of features for the next release. How-
ever, if these features are not stable enough to be included
in the upcoming release, they will be left out by the
cross-project release management team. As pointed out
recently, release management constrains the evolution of
the integrated whole [33, pp 4].
By investigating both the release management processes

and the tools that support it at OpenStack, we found
both the micro-tagging approach and the Reno release
notes manager as novel and distinctive from other open
source release management cases (c.f., [5, 10],). Future
research could report on how the OpenStack techni-
cal committee and the release management team employ
repository tags to signal that a certain component of
OpenStack was release managed (an indicator of qual-
ity), that certain component can be marketed as a core
component of OpenStack, or that a given project fol-
lowed a suitable design or achieved a high level of

diversity in the affiliation of contributors (an indicator
of a healthy collaborative project). Assuming that oth-
ers might be interested in Reno as a novel open source
tool supporting release management processes, future
research should explore whether the following character-
istics of Reno could bring value to the practices of release
management in particular and software engineering in
general.

• Release notes are automatically associated with the
release version based on the repository tags applied to
the repository. It is not necessary to track changes
manually outside the repository (e.g., in a bug tracker,
a spreadsheet or other tool).

• Release notes are encoded within the source code
repository at the side of correspondent features
source code. This means that release notes can be
written when the code changes within the same
development environment.

• Release notes go through the same review process
used for managing code and other documentation
changes.

• Release notes are encoded in a standardized format.
Notes are organized into logical groups based on
whether they describe new features, bug fixes, known
issues, or other topics of interest to deployers, users,
and developers.

• Prior to delivering new features to the release
management team, release notes can be automatically
aggregated and documented from the source code
repository with Reno. Developers only need to run a
script that invokes Reno.

• Release notes can be easily located by project, release
series, branch, earliest revision, and date, among
other parameters. Developers can search for specific
sets of release notes and sections.

Adding to prior work, and in addition to considering
the overall release management process of OpenStack as
a hybrid of feature-based and time-based release manage-
ment, we also consider it as quite liberal. We found the
OpenStack release management process to be liberal in
multiple aspects:

• Liberal as the official releases dates, the milestones,
and the freezes are not strict but negotiated and
applied by the release management team in
cooperation with the different project teams. In an
analogy with trains, a given train might be scheduled
to depart at a given time, nevertheless, they might
come a bit before or a bit later due to a number of
organizational or technical issues. Still, the train
schedules remain a useful artifact for planning
purposes.

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 17 of 22

• Liberal as different teams (e.g., testing, drivers,
documentation, and translation) are granted with
extra days, or even a few weeks, to deliver their own
releases. Releasing depends on the context, nature
and interdependencies of the artifacts being
developed. Examples include testing how a certain
hardware driver complies with new developments,
developing a new library that relies on external APIs
and translating recent documentation to another
language.

• Liberal as feature freeze exceptions are granted by the
release management team and the technical
committee in exceptional cases (e.g., for landing a
release critical fix). These feature freeze exceptions
need to be properly discussed and documented
before being granted, controlled and monitored.

• Liberal, as well, as OpenStack started more recently
recommending four different release management
models. Even if most of the models trail the common
six-month release ’train’, the OpenStack governance
recognized over time the need for certain teams and
individuals to manage their own release strategy
independently.

Given the complexity of the OpenStack software
ecosystem in general and the historical evolution of its
release management processes in particular, we opted
to keep our main research efforts as descriptive. Our
main contribution is then a straightforward longitu-
dinal account of the release management practices at
OpenStack, an account that, to our belief, can bring
issues of interests to the Software Engineering and
Free/libre/open source (FLOSS) research communities.
Both academics and practitioners can now assess the
similarity or dissimilarity of the release management
processual patterns of OpenStack with other projects -
this kind of comparison can lead to lessons learned or
even to improvements on the way organizations release
software.
We have studied, gained understanding and described

many of the release management processes and tools
with OpenStack. We have given our own interpreta-
tions of the release management phenomena in the con-
text of OpenStack, that is, in an open source software
ecosystem that has so far continuously grow in size and
complexity. Ourmost striking finding is that the evolution
of release management processes at OpenStack has led to
the co-existance of not one but several release manage-
ment cycles. Since October 2016, the OpenStack release
management formally recognize four different release
management models.
We can conclude that as a software ecosystem grows in

size and complexity, its developers might follow not one
but several release management cycles. This conclusion

calls for further research investigating why, how, andwhen
projects should implement multi-cycle release manage-
ment strategies. In the particular case of OpenStack, it
remains unexplored whether the formal co-existence of
four different release management models has had a posi-
tive impact on the amount or quality of the software being
contributed by its developers. Future research address-
ing multi-cycle release management strategies might be a
fruitful avenue in Software Engineering. So far, we know
that smaller open source projects at early stages tradi-
tionally announce releases once new features are imple-
mented. We also know that large and successful open
source projects benefited with the implementation of
time-based release schedules [5], but so far little is known
about projects where multiple release models co-exist
with each other as we found in our case. Future quanti-
tative investigation unveiling causal relationships between
the socio-technical characteristics of teams and artifacts
(e.g., sub-projects team size, application vs. library, mod-
ularity, and coupling among many other socio-technical
characteristics) and the different release management
models, are, in our view, research efforts worth being
explored.
At this point, we are not attempting to evaluate, appraise

or compare the captured releasemanagement processes of
OpenStack. Our focus was on describing the most salient
release management patterns by deeply studying them.
Besides leading to descriptive findings, our investigation
of OpenStack opens multiple avenues for future research.
An obvious step is to move from a single case to a

multipl case study design. Future research could ana-
lyze and juxtapose the processual practices of release
management across multiple cases [5, 33]. Both within
OpenStack, or in other projects, digital trace data gen-
erated by the upstream integration processes, the source
code repositories, the code review systems, and the bug
trackers could be used to triangulate the authenticity of
the conceptual release management models in practice48.
Also, it remains unknown why and how multiple release
cycles co-exist in large and complex software ecosystems.
Another salient issue pertains to themanagement of infor-
mation regarding releasemanagement (e.g., should release
management notes be stored at the side of the source code
in the repository, or should new systems be developed
for better structuring all information regarding release
management).
Given the co-existence of multiple avenues for future

research, and as we intend to continue our engagement
with the OpenStack community, we plan to address some
of the current challenges faced by the OpenStack release
management team. The OpenStack community could
benefit from better co-release practices with its end users
and deployers, because their feedback often comes too late
to shape the next immediate release cycle. Better practices

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 18 of 22

could also reduce the large cognitive load that first time,
part time and occasional contributors face releasing their
software, because release management adds a set of dis-
couraging barriers for contributors that are not that
familiar with the overall research management processes.
Engaged empirical research taking a critical stance on
these practical issues could lead to improvements in the
release management process and overall organizational
design of the OpenStack ecosystem. While so far we had
focused on processes and tools, future research should
also explore the organizational design supporting and
shaping release management at OpenStack. Along these
lines, future research could engage with theoretical frame-
works such as the Conway’s mirroring hypothesis [52],
socio-technical congruence [53] or socio-materiality [54]
to explore release management from an entangled organi-
zational and technical perspective. After all, it is expected
that the organizational design supporting release man-
agement is shaped by the artifacts being developed (e.g.,
code and documentation) and the other way around. The
use of such theoretical frameworks challenges researchers
to not separate organizational and technical issues from
each other but build knowledge while intertwining
them.

8 Conclusions
OpenStack implemented a time-based release strategy
that trails a six-month cycle. Each cycle comprehends a
planning stage, an implementation stage and freeze, sta-
bilize and launch stage. In the middle of each release
cycle, the community relies on three freezes (i.e., “Fea-
tureFreeze”, “SoftStringFreeze” and “HardStringFreeze”)
that encourage developers to change their production
focus from the development of components to the over-
all upstream integration and stabilization of components
as a whole. This change affects much the work and com-
munication patterns of the community. The implemented
release management process exhibits hybrid characteris-
tics of both feature-based and time-based release man-
agement strategies as the process is both feature and
time oriented. Moreover, the implemented release cycle
is quite liberal and in this way open to changes and
flexible to adaptation. In particular contexts, different
project teams across the community are allowed to work
around the default six months release cycle. Even when
the project advocates a six month release cycle, different
release cycles do co-exist across the different OpenStack
sub-projects.
The implementation of a liberal time-based release

strategy is a complex process that intertwines with many
other software development processes. In the case of
large and complex open source software ecosystems,
this requires the support of a well suited organizational
design as much coordination is needed. Moreover, the

process constrains the evolution of the integrated core
and depends heavily on many software tools that make it
possible. These tools help, for example, version control,
revision control, continuous upstream integration, con-
tinuous upstream testing, and configurationmanagement.
Besides its acknowledged benefits (see [36]), the imple-
mentation of a liberal time-based release strategy is a
challenging cooperative task interweaving people with
processes and technology.

Endnotes
1 See https://docs.openstack.org/project-team-guide/

introduction.html for a brief overview of the history of
OpenStack as provided by the community.

2 See the historical newsgroup https://news:comp.os.
linux.announce where developers announced new releases
of open source software for Linux with a strong emphasis
on the implemented features.

3 Seehttps://www.kernel.org/category/releases.html and
https://www.debian.org/releases/ for information on the
releases of Linux (2-3 months release cycle) and Debian
(with a two years release cycle).

4Here we add that many automated user interface test-
ing tools and techniques depend on the stability of certain
strings (see [55, 56]) as well.

5 See http://www.openstack.org/ for the official website.
6 Seehttp://451research.com/report-short?entityId=82593.
7 See https://doughellmann.com/blog/2016/03/15/ for a

blog post regarding the process automation efforts by the
OpenStack release management team.

8A compressed archiving format that is very popular
within the open source community

9 See https://nodis3.gsfc.nasa.gov/ for the NASAOnline
Directives Information Systems (Agency Level Directives)
and https://swehb.nasa.gov/ from the Software Working
Group for accessing relevant versions of this kind of
procedural documentation.

10 See https://open.nasa.gov/blog/opensource-development-
at-nasa/ for more information on how NASA has
improved its engagement with the open source
community.

11 See https://www.mirantis.com/blog/openstack-project-
technical-lead-interview-series-4-thierry-carrez-chair-of-the-
openstack-technical-committee-release-manager/

12 See https://ttx.re/the-diablo-1-milestone.html for
more information on the switch from a 3-month cycle to
a 6-month coordinated release cycle.

https://docs.openstack.org/project-team-guide/introduction.html
https://docs.openstack.org/project-team-guide/introduction.html
https://news:comp.os.linux.announce
https://news:comp.os.linux.announce
https://www.kernel.org/category/releases.html
https://www.debian.org/releases/
http://www.openstack.org/
http://451research.com/report-short?entityId=82593
https://doughellmann.com/blog/2016/03/15/
https://nodis3.gsfc.nasa.gov/
https://swehb.nasa.gov/
https://open.nasa.gov/blog/opensource-development-at-nasa/
https://open.nasa.gov/blog/opensource-development-at-nasa/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://ttx.re/the-diablo-1-milestone.html

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 19 of 22

13 See https://www.mirantis.com/blog/openstack-project-
technical-lead-interview-series-4-thierry-carrez-chair-of-the-
openstack-technical-committee-release-manager/

14 See historical information on the exact release dates
at https://releases.openstack.org/.

15 See https://www.openstack.org/blog/2011/09/openstack-
announces-diablo-release/.

16 For an exhaustive list of OpenStack repositories see
http://git.openstack.org/cgit.

17We acknowledge that some OpenStack components
are also hosted in multiple repositories (e.g., Neutron the
“network connectivity as a service” component). They are,
however, exceptional cases.

18 Transcribed from video, see [1:26–2:06] https://
www.openstack.org/summit/vancouver-2015/summit-
videos/presentation/the-big-tent-a-look-at-the-new-
openstack-projects-governance.

19 See http://specs.openstack.org/ for intra-project and
cross-project specifications.

20 See https://wiki.openstack.org/wiki/Blueprints for more
information on how OpenStack handles its blueprints
(aka design plans) that track each feature implementation.

21 For more information on the OpenStack code-review
activities, see https://docs.openstack.org/infra/manual/
developers.html.

22 See https://launchpad.net/ for more information on
the adopted software collaboration platform as well as
https://launchpad.net/openstack for more information on
how OpenStack uses it.

23 See http://docs.openstack.org/infra/jenkins-job-builder/
for more information on continuous upstream unit test-
ing as well as http://docs.openstack.org/infra/zuul/ and
http://docs.openstack.org/developer/tempest/ for more
information on continuous upstream integration testing
across interrelated projects and repositories.

24 See http://docs.openstack.org/project-team-guide/release-
management.html for more information on the release
cycles.

25 See https://wiki.openstack.org/wiki/BugTriage and
https://wiki.openstack.org/wiki/Bugs for more informa-
tion on bugfixing activities.

26 See http://docs.openstack.org/project-team-guide/release-
management.html for the details of each release manage-
ment model.

27 Transcribed from video, see [6:34–7:00] https://
www.openstack.org/summit/vancouver-2015/summit-

videos/presentation/the-big-tent-a-look-at-the-new-
openstack-projects-governance.

28Git was created by Linus Torvalds in 2005 for devel-
opment of the Linux kernel and it is now used by millions
of software development projects.

29 See http://semver.org/ for the Semantic Versioning
Specification (SemVer) adopted by OpenStack that dis-
tinguishes between MAJOR, MINOR and PATCH incre-
ments.

30 Please note that in Git, branches are essentially mere
commit bookmarks.

31 YAML is a human-readable data serialization lan-
guage commonly used for configuration files. See http://
yaml.org/ for more information.

32Contextually, the neutron repository hosts the core
networking services of OpenStack while the neutron-
fwaas project hosts the firewall services that heavily
depend on them.

33 See https://github.com/openstack/releases for track-
ing the release deliverables of OpenStack.

34 For more information on GnuPG see https://gnupg.
org/.

35 See http://nvie.com/posts/a-successful-git-branching-
model/ for a branching model that inspired how the Git
branching and tagging functionalities are used in Open-
Stack.

36 See the guidelines laid out in sections 4.1 and 4.13 of
the OpenStack Foundation Bylaws for legal details.

37As pointed out by Michlmayr (2007) [35] few open
source software projects have a formal post-release review
process.

38 See https://www.gerritcodereview.com/ for more
information on Gerrit.

39 See http://wiki.openstack.org/wiki/QA for the mis-
sion statement of the OpenStack Quality Assurance team.

40 See ’OpenStack Project Team Guide’ wiki page, ’Test-
ing (QA and CI)’ section at https://docs.openstack.org/
project-team-guide/testing.html for the original source
andmore information onQuality Assurance (QA) and the
Continuous Integration (CI) operations at OpenStack.

41 For a detailed description on how the contious inte-
gration testing system of OpenStack works, see http://
www.joinfu.com/2014/01/understanding-the-openstack-
ci-system/ – A blog post from an OpenStack contributor
affiliated with Mirantis.

https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://releases.openstack.org/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
http://git.openstack.org/cgit
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
http://specs.openstack.org/
https://wiki.openstack.org/wiki/Blueprints
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html
https://launchpad.net/
https://launchpad.net/openstack
http://docs.openstack.org/infra/jenkins-job-builder/
http://docs.openstack.org/infra/zuul/
http://docs.openstack.org/developer/tempest/
http://docs.openstack.org/project-team-guide/release-management.html
http://docs.openstack.org/project-team-guide/release-management.html
https://wiki.openstack.org/wiki/BugTriage
https://wiki.openstack.org/wiki/Bugs
http://docs.openstack.org/project-team-guide/release-management.html
http://docs.openstack.org/project-team-guide/release-management.html
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
http://semver.org/
http://yaml.org/
http://yaml.org/
https://github.com/openstack/releases
https://gnupg.org/
https://gnupg.org/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://www.gerritcodereview.com/
http://wiki.openstack.org/wiki/QA
https://docs.openstack.org/project-team-guide/testing.html
https://docs.openstack.org/project-team-guide/testing.html
http://www.joinfu.com/2014/01/understanding-the-openstack-ci-system/
http://www.joinfu.com/2014/01/understanding-the-openstack-ci-system/
http://www.joinfu.com/2014/01/understanding-the-openstack-ci-system/

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 20 of 22

42 See https://launchpad.net/ for more information on
the Launchpad software collaboration platform provided
by Canonical (a top contributor to OpenStack).

43 See http://etherpad.org/ for more information on the
collaborative online editor of documents provided by the
Etherpad Foundation.

44 See http://www.seleniumhq.org/ for the Selenium
official website.

45 See https://www.djangoproject.com/ for more infor-
mation on the Django web framework.

46 See https://git-scm.com/docs/git-tag more informa-
tion on the Git tag mechanisms.

47 See https://governance.openstack.org/tc/reference/
tags/index.html for an overview of these tags.

48 See [57–61] for recent discussions on validity issues
regarding the collection and analysis of digital trace data.

Abbreviations
2D: Two-dimensional; 3D: Three-dimensional; ACL: Access control list; API:
Application programming interface; CI: Continuous integration: EOL: End of
life; FFE: Feature freeze exception; floss: Free and libre open source software;
FLOSS: Free/libre/open source software; IaaS: Infrastructure as a service; IS:
Information systems; ISD: Information systems development; OSS: Open
source software; MSR: Mining software repositories; NASA: National
Aeronautics and Space Administration; NOSA: NASA open source agreement;
OSCON: Open source convention; OSI: Open source initiative; PTLs: Project
team leads; QA: Quality assurance; RC: Release candidate; SDK: Software
development kit; SNA: Social network analysis; TELCO: Telecommunications
companies; TC: Technical Committee

Acknowledgments
We are grateful to a number of developers that facilitated our understanding
of release management at OpenStack. Some of them clarified our
observations and revised particular sections of this manuscript. We are very
grateful to the overall OpenStack community for developing an open,
transparent and inclusive cloud computing infrastructure for big-data while
being friendly towards academic research.

Funding
This work was partially supported by Liikesivistysrahasto (grants 170387 and
170388) and the DiWIL project (Impact of Information Literacy in the Digital
Workplace research project) funded by the Academy of Finland and Åbo
Akademi.

Availability of data andmaterials
This research was based on naturally occurring data (i.e., data that was
generated without direct intervention from the researchers) from publicly
available Internet websites. Both textual and audiovisual pieces of evidence
were collected from the following URLs:

• https://www.openstack.org/
• https://www.openstack.org/software/roadmap/
• https://docs.openstack.org/
• https://docs.openstack.org/infra/manual/developers.html
• https://docs.openstack.org/infra/jenkins-job-builder
• https://docs.openstack.org/infra/zuul
• https://docs.openstack.org/developer/tempest/
• https://docs.openstack.org/project-team-guide/introduction.html
• https://docs.openstack.org/project-team-guide/testing.html
• https://docs.openstack.org/project-team-guide/release-management.

html

• https://docs.openstack.org/project-team-guide/stable-branches.html
• https://docs.openstack.org/releasenotes/
• https://docs.openstack.org/releasenotes/neutron/ocata.html
• https://releases.openstack.org/
• https://releases.openstack.org/reference/release_models.html
• http://git.openstack.org/cgit
• http://git.openstack.org/cgit/openstack/governance/tree/reference/

house-rules.rst
• http://git.openstack.org/cgit/openstack/releases/tree/README.rst
• http://specs.openstack.org/
• https://wiki.openstack.org/wiki/Blueprints
• https://wiki.openstack.org/wiki/BugTriage
• https://wiki.openstack.org/wiki/Bugs
• https://wiki.openstack.org/wiki/QA
• https://wiki.openstack.org/wiki/Branch_Model
• https://wiki.openstack.org/wiki/DiabloReleaseSchedule
• https://wiki.openstack.org/wiki/Governance/Foundation/Bylaws
• https://governance.openstack.org/tc/reference/tags/index.html
• https://www.openstack.org/blog/2011/09/openstack-announces-

diablo-release/
• https://www.openstack.org/summit/vancouver-2015/summit-videos/

presentation/the-big-tent-a-look-at-the-new-openstack-projects-
governance

• https://www.openstack.org/summit/tokyo-2015/videos/presentation/
herding-cats-into-boxes-how-openstack-release-management-
changes-with-the-big-tent

• https://launchpad.net/openstack
• https://451research.com/report-short?entityId=82593
• https://doughellmann.com/blog/2016/03/15/
• https://nodis3.gsfc.nasa.gov/
• https://swehb.nasa.gov/
• https://open.nasa.gov/blog/opensource-development-at-nasa/
• https://www.mirantis.com/blog/openstack-project-technical-lead-

interview-series-4-thierry-carrez-chair-of-the-openstack-technical-
committee-release-manager/

• https://ttx.re/
• https://ttx.re/the-diablo-1-milestone.html
• https://robhirschfeld.com/2012/09/28/balastic-release/
• https://github.com/openstack/releases
• http://nvie.com/posts/a-successful-git-branching-model
• http://www.joinfu.com/2014/01/understanding-the-openstack-ci-

system/
• http://www.eweek.com/cloud/openstack-moves-from-integrated-

release-to-big-tent-model.html
• https://fnords.wordpress.com/2011/07/01/time-based-good-for-

community/

The raw data was archived and deposited at the first author research website
(http://users.abo.fi/jteixeir/pub/rel-man/jisa2019) and at the Finnish Social
Science Data Archive (http://www.fsd.uta.fi/en/).

Authors’ contributions
JT conducted the overall data collection. HK participated in the analysis, in the
overall crafting of the manuscript and in its successive revisions. Both authors
read and approved the final manuscript.

Competing interests
The author declares no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 31 January 2018 Accepted: 9 November 2018

References
1. Raymond E. The cathedral and the bazaar. Knowl Technol Policy.

1999;12(3):23–49.
2. Raymond E. The Cathedral & the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. Newton: O’Reilly Media; 2001.
http://www.catb.org/esr/writings/cathedral-bazaar/.

https://launchpad.net/
http://etherpad.org/
http://www.seleniumhq.org/
https://www.djangoproject.com/
https://git-scm.com/docs/git-tag
https://governance.openstack.org/tc/reference/tags/index.html
https://governance.openstack.org/tc/reference/tags/index.html
https://www.openstack.org/
https://www.openstack.org/software/roadmap/
https://docs.openstack.org/
https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/jenkins-job-builder
https://docs.openstack.org/infra/zuul
https://docs.openstack.org/developer/tempest/
https://docs.openstack.org/project-team-guide/introduction.html
https://docs.openstack.org/project-team-guide/testing.html
https://docs.openstack.org/project-team-guide/release-management.html
https://docs.openstack.org/project-team-guide/release-management.html
https://docs.openstack.org/project-team-guide/stable-branches.html
https://docs.openstack.org/releasenotes/
https://docs.openstack.org/releasenotes/neutron/ocata.html
https://releases.openstack.org/
https://releases.openstack.org/reference/release_models.html
http://git.openstack.org/cgit
http://git.openstack.org/cgit/openstack/governance/tree/reference/house-rules.rst
http://git.openstack.org/cgit/openstack/governance/tree/reference/house-rules.rst
http://git.openstack.org/cgit/openstack/releases/tree/README.rst
http://specs.openstack.org/
https://wiki.openstack.org/wiki/Blueprints
https://wiki.openstack.org/wiki/BugTriage
https://wiki.openstack.org/wiki/Bugs
https://wiki.openstack.org/wiki/QA
https://wiki.openstack.org/wiki/Branch_Model
https://wiki.openstack.org/wiki/DiabloReleaseSchedule
https://wiki.openstack.org/wiki/Governance/Foundation/Bylaws
https://governance.openstack.org/tc/reference/tags/index.html
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
https://www.openstack.org/blog/2011/09/openstack-announces-diablo-release/
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/vancouver-2015/summit-videos/presentation/the-big-tent-a-look-at-the-new-openstack-projects-governance
https://www.openstack.org/summit/tokyo-2015/videos/presentation/herding-cats-into-boxes-how-openstack-release-management-changes-with-the-big-tent
https://www.openstack.org/summit/tokyo-2015/videos/presentation/herding-cats-into-boxes-how-openstack-release-management-changes-with-the-big-tent
https://www.openstack.org/summit/tokyo-2015/videos/presentation/herding-cats-into-boxes-how-openstack-release-management-changes-with-the-big-tent
https://launchpad.net/openstack
https://451research.com/report-short?entityId=82593
https://doughellmann.com/blog/2016/03/15/
https://nodis3.gsfc.nasa.gov/
https://swehb.nasa.gov/
https://open.nasa.gov/blog/open source-development-at-nasa/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://www.mirantis.com/blog/openstack-project-technical-lead-interview-series-4-thierry-carrez-chair-of-the-openstack-technical-committee-release-manager/
https://ttx.re/
https://ttx.re/the-diablo-1-milestone.html
https://robhirschfeld.com/2012/09/28/balastic-release/
https://github.com/openstack/releases
http://nvie.com/posts/a-successful-git-branching-model
http://www.joinfu.com/2014/01/understanding-the-openstack-ci-system/
http://www.joinfu.com/2014/01/understanding-the-openstack-ci-system/
http://www.eweek.com/cloud/openstack-moves-from-integrated-release-to-big-tent-model.html
http://www.eweek.com/cloud/openstack-moves-from-integrated-release-to-big-tent-model.html
https://fnords.wordpress.com/2011/07/01/time-based-good-for-community/
https://fnords.wordpress.com/2011/07/01/time-based-good-for-community/
http://users.abo.fi/jteixeir/pub/rel-man/jisa2019
http://www.fsd.uta.fi/en/
http://www.catb.org/esr/writings/cathedral-bazaar/

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 21 of 22

3. Zhao L, Elbaum S. A survey on quality related activities in open source.
SIGSOFT Softw Eng Notes. 2000;25(3):54–7. https://doi.org/10.1145/
505863.505878.

4. Aberdour M. Achieving quality in open source software. IEEE Softw.
2007;24(1):58–64.

5. Michlmayr M, Fitzgerald B, Stol K-J. Why and how should open source
projects adopt time-based releases? Softw IEEE. 2015;32(2):55–63.

6. Barqawi N, Syed K, Mathiassen L. Applying service-dominant logic to
recurrent release of software: an action research study. J Bus Ind Mark.
2016;31(7):928–40. https://doi.org/10.1108/JBIM-02-2015-0030. http://dx.
doi.org/10.1108/JBIM-02-2015-0030.

7. Khomh F, Adams B, Dhaliwal T, Zou Y. Understanding the impact of
rapid releases on software quality. Empir Softw Eng. 2015;20(2):336–73.

8. Choudhary V, Zhang Z. Research note—patching the cloud: The impact
of saas on patching strategy and the timing of software release. Inf Syst
Res. 2015;26(4):845–58.

9. Wright HK, Perry DE. Release engineering practices and pitfalls. In:
Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12. New York, USA: IEEE Press; 2012. p. 1281–4. https://
doi.org/10.1109/ICSE.2012.6227099. http://dl.acm.org/citation.cfm?id=
2337223.2337395.

10. Poo-Caamaño G, Knauss E, Singer L, German DM. Herding cats in a foss
ecosystem: a tale of communication and coordination for release
management. J Internet Serv Appl. 2017;8(1):12. https://doi.org/10.1186/
s13174-017-0063-2.

11. O’Reilly T. Lessons from open source software development. Commun
ACM. 1999;42(4):32–7. https://doi.org/10.1145/299157.299164.

12. Spinellis D, Szyperski C. How is open source affecting software
development? IEEE Softw. 2004;21(1):28.

13. Fitzgerald B. Open source software: Lessons from and for software
engineering. Computer. 2011;44(10):25–30.

14. Wuhib F, Stadler R, Lindgren H. Dynamic resource allocation with
management objectives—implementation for an openstack cloud. In:
Network and Service Management (cnsm), 2012 8th International
Conference and 2012 Workshop on Systems Virtualiztion Management
(svm). IEEE; 2012. p. 309–15.

15. Corradi A, Fanelli M, Foschini L. Vm consolidation: A real case based on
openstack cloud. Futur Gener Comput Syst. 2014;32:118–27.

16. Teixeira J, Robles G, González-Barahona JM. Lessons learned from
applying social network analysis on an industrial Free/Libre/Open Source
Software ecosystem. J Internet Serv Appl. 2015;6(1):14. https://doi.org/10.
1186/s13174-015-0028-2.

17. Ge X, Liu Y, Du DH, Zhang L, Guan H, Chen J, Zhao Y, Hu X. Openanfv:
Accelerating network function virtualization with a consolidated
framework in openstack. ACM SIGCOMM Comp Commun Rev. 2015;44(4):
353–4.

18. Malik A, Ahmed J, Qadir J, Ilyas MU. A measurement study of open
source sdn layers in openstack under network perturbation. Comput
Commun. 2017;Volume 102:139–49.

19. Müller D, Herbst J, Hammori M, Reichert M. International Conference on
Business Process Management (BPM 2006). In: Dustdar S, Fiadeiro JL,
Sheth AP, editors. Berlin, Heidelberg: Springer; 2006. p. 368–77.

20. Stark GE, Oman P, Skillicorn A, Ameele A. An examination of the effects
of requirements changes on software maintenance releases. J Softw
Maint. 1999;11(5):293–309.

21. Ruhe G. Product Release Planning: Methods, Tools and Applications: CRC
Press; 2010. https://books.google.fi/books?id=rVvLBQAAQBAJ.

22. Jørgensen N. Putting it all in the trunk: incremental software development
in the freebsd open source project. Inf Syst J. 2001;11(4):321–36.

23. Cleveland S, Ellis TJ. Orchestrating end-user perspectives in the software
release process: An integrated release management framework. Adv
Hum-Comp Interact. 2014;2014:13.

24. Laukkanen E, Paasivaara M, Itkonen J, Lassenius C. Comparison of
release engineering practices in a large mature company and a startup.
Empir Softw Eng. 2018. https://doi.org/10.1007/s10664-018-9616-7.

25. Teixeira J. On the openness of digital platforms/ecosystems. In:
Proceedings of The International Symposium on Open Collaboration,
OpenSym ’15. New York: ACM; 2015.

26. Howison J, Crowston K. Collaboration through open superposition: A
theory of the open source way. MIS Q. 2014;38(1):29–50.

27. Hall BH, MacGarvie M. The private value of software patents. Res Policy.
2010;39(7):994–1009. https://doi.org/10.1016/j.respol.2010.04.007.

28. Rossi B, Russo B, Succi G. Analysis of open source software development
iterations by means of burst detection techniques. In: Open Source
Ecosystems: Diverse Communities Interacting. Berlin: Springer; 2009. p.
83–93.

29. Wiggins A, Howison J, Crowston K. Heartbeat: measuring active user
base and potential user interest in floss projects. In: IFIP International
Conference on Open Source Systems. Springer; 2009. p. 94–104.

30. Ihara A, Fujibayashi D, Suwa H, Kula RG, Matsumoto K. Understanding
When to Adopt a Library: A Case Study on ASF Projects, Open Source
Systems: Towards Robust Practices. Cham: Springer; 2017, pp. 128–38.
https://doi.org/10.1007/978-3-319-57735. https://doi.org/10.1007/978-3-
319-57735.

31. Michlmayr M. Quality improvement in volunteer free and open source
software projects – exploring the impact of release management. PhD
thesis: University of Cambridge; 2007.

32. Wright HK. Release engineering processes, their faults and failures. PhD
thesis: University of Texas; 2012.

33. Poo-Caamaño G. Release management in free and open source software
ecosystems. PhD thesis. Canada: University of Victoria; 2016.

34. Martinez-Romo J, Robles G, Gonzalez-Barahona JM, Ortuño-Perez M.
Using social network analysis techniques to study collaboration between
a floss community and a company. In: Open Source Development,
Communities and Quality. NYC, USA: Springer; 2008. p. 171–86.

35. Michlmayr M, Hunt F, Probert D. Release management in free software
projects: Practices and problems. In: IFIP International Conference on
Open Source Systems. Springer; 2007. p. 295–300.

36. Michlmayr M, Fitzgerald B. Time-based release management in free and
open source (foss) projects. Int J Open Source Softw Process (IJOSSP).
2012;4(1):1–19.

37. Anand A, Bhatt N, Aggrawal D, Papic L. In: Ram M, Davim JP, editors.
Software Reliability Modeling with Impact of Beta Testing on Release
Decision. Cham: Springer; 2017, pp. 121–38.

38. Teixeira J, Mian S, Hytti U. Cooperation among competitors in the open
source arena: The case of openstack. In: Proceedings of the International
Conference on Information Systems (ICIS 2016). Atlanta: Association for
Information Systems; 2016.

39. Runeson P, Höst M. Guidelines for conducting and reporting case study
research in software engineering. Empir Softw Eng. 2008;14(2):131–64.

40. Easterbrook S, Singer J, Storey M-A, Damian D. In: Shull F, Singer J,
Sjøberg DIK, editors. Selecting Empirical Methods for Software
Engineering Research. London: Springer; 2008, pp. 285–311.

41. Yin RK. Applications of Case Study Research. Thousand Oaks: Sage; 2011.
42. Eisenhardt KM. Building theories from case study research. Acad Manag

Rev. 1989;14(4):532–50.
43. Flynn BB, Sakakibara S, Schroeder RG, Bates KA, Flynn EJ. Empirical

research methods in operations management. J Oper Manag. 1990;9(2):
250–84.

44. Kozinets RV. The field behind the screen: using netnography for
marketing research in online communities. J Mark Res. 2002;39(1):61–72.

45. Kozinets RV. Netnography: Doing Ethnographic Research Online. London,
UK: Sage Publications Limited; 2009.

46. Yin RK. Case Study Research: Design and Methods. Applied social
research methods series. Thousand Oaks: Sage Publications; 1994.

47. Teixeira J, Hyrynsalmi S. How do software ecosystems co-evolve? a view
from openstack and beyond. In: Proceedings of the 8th International
Conference on Software Business (ICSOB 2017). New York, USA: Springer;
2017. p. 115–30.

48. Sharma S, Sugumaran V, Rajagopalan B. A framework for creating
hybrid-open source software communities. Inf Syst J. 2002;12(1):7–25.

49. Narayan N, Finis J, Li Y, Delater A. Leveraging traceability between code
and tasks for code review and release management. In: Proceedings of
the 7th International Conference on Software Engineering Advances
(ICSEA); 2012. p. 8–14.

50. Bosu A, Carver JC, Bird C, Orbeck J, Chockley C. Process aspects and
social dynamics of contemporary code review: Insights from open source
development and industrial practice at microsoft. IEEE Trans Softw Eng.
2017;43(1):56–75. https://doi.org/10.1109/TSE.2016.2576451.

51. Armisen A, Majchrzak A, Brunswicker S. Formative and summative
feedback in solution generation: The role of community and decision
support system in open source software. In: Proceedings of the

https://doi.org/10.1145/505863.505878
https://doi.org/10.1145/505863.505878
https://doi.org/10.1108/JBIM-02-2015-0030
http://dx.doi.org/10.1108/JBIM-02-2015-0030
http://dx.doi.org/10.1108/JBIM-02-2015-0030
https://doi.org/10.1109/ICSE.2012.6227099
https://doi.org/10.1109/ICSE.2012.6227099
http://dl.acm.org/citation.cfm?id=2337223.2337395
http://dl.acm.org/citation.cfm?id=2337223.2337395
https://doi.org/10.1186/s13174-017-0063-2
https://doi.org/10.1186/s13174-017-0063-2
https://doi.org/10.1145/299157.299164
https://doi.org/10.1186/s13174-015-0028-2
https://doi.org/10.1186/s13174-015-0028-2
https://books.google.fi/books?id=rVvLBQAAQBAJ
https://doi.org/10.1007/s10664-018-9616-7
https://doi.org/10.1016/j.respol.2010.04.007
https://doi.org/10.1007/978-3-319-57735
https://doi.org/10.1007/978-3-319-57735
https://doi.org/10.1007/978-3-319-57735
https://doi.org/10.1109/TSE.2016.2576451

www.manaraa.com

Teixeira and Karsten Journal of Internet Services and Applications (2019) 10:7 Page 22 of 22

International Conference on Information Systems (ICIS 2016). Atlanta:
Association for Information Systems; 2016.

52. Kwan I, Cataldo M, Damian D. Conway’s law revisited: The evidence for a
task-based perspective. IEEE Softw. 2012;29(1):90–3.

53. Cataldo M, Herbsleb JD, Carley KM. Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies
on software development productivity. In: Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement. ACM; 2008. p. 2–11.

54. Orlikowski WJ, Scott SV. Sociomateriality: challenging the separation of
technology, work and organization. Acad Manag Annals. 2008;2(1):
433–74.

55. Mesbah A, Van Deursen A. Invariant-based automatic testing of ajax user
interfaces. In: Software Engineering, 2009. ICSE 2009. IEEE 31st
International Conference On. IEEE; 2009. p. 210–20.

56. Artzi S, Dolby J, Jensen SH, Moller A, Tip F. A framework for automated
testing of javascript web applications. In: Software Engineering (ICSE),
2011 33rd International Conference On. IEEE; 2011. p. 571–80.

57. Howison J, Wiggins A, Crowston K. Validity issues in the use of social
network analysis with digital trace data. J Assoc Inf Syst. 2012;44(2):767–97.

58. Hedman J, Srinivasan N, Lindgren R. Digital traces of information systems
made researchable. In: Proceedings of the International Conference on
Information Systems (ICIS 2013). Atlanta: Association for Information
Systems; 2013.

59. Freelon D. On the interpretation of digital trace data in communication
and social computing research. J Broadcast Elec Media. 2014;58(1):59–75.

60. Ruths D, Pfeffer J. Social media for large studies of behavior. Science.
2014;346(6213):1063–4.

61. Crowston K. In: Matei SA, Jullien N, Goggins SP, editors. Levels of Trace
Data for Social and Behavioural Science Research. Cham: Springer; 2017,
pp. 39–49.

www.manaraa.com

© 2019. This work is published under
http://creativecommons.org/licenses/by/4.0/(the “License”). Notwithstanding

the ProQuest Terms and Conditions, you may use this content in accordance
with the terms of the License.

	Abstract
	Keywords

	Introduction
	Prior related work
	Empirical background
	Methodological design
	Results: a processual view
	Early days at NASA
	Bootstrap as an open source project
	Reaching maturity as complex open source project

	Results: infrastructural tools
	Discussion, planning and specifying
	Orchestrating distributed work, tagging and version control
	Reviewing
	Testing, gating and continuously integrating
	Cross-team release management

	Discussion
	Conclusions
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	References

